Doubling the Global Work Force: The Challenge of Integrating China, India, and the Former Soviet Bloc into the World Economy

November 8, 2004

Richard B. Freeman
Harvard University and NBER
Centre for Economic Performance, London School of Economics
One Big Fact

In 1985, the global economic world (N. America, S. America, Western Europe, Japan, Asian Tigers, Africa) consisted of 2.5 billion people.

In 2000 as a result of the collapse of communism, India’s turn from autarky, China’s shift to market capitalism, global economy encompassed 6 billion people.

Had China, India, and the former Soviet empire stayed outside, global economy would have had 3.3 billion.
The Change Doubled Global Labor Force

<table>
<thead>
<tr>
<th></th>
<th>Global</th>
<th>Advanced LDC</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>960</td>
<td>370</td>
<td>590</td>
</tr>
<tr>
<td>2000 Before</td>
<td>1,460</td>
<td>460</td>
<td>1,000</td>
</tr>
<tr>
<td>2000 After</td>
<td>2,930</td>
<td>460</td>
<td>1,000</td>
</tr>
</tbody>
</table>

- China, 760; India, 440; Ex-Soviet, 260

Source: tabulated from ILO, laborsta.ilo.org/
Another Source: Penn World Tables

<table>
<thead>
<tr>
<th>Year</th>
<th>Global</th>
<th>Advanced LDC</th>
<th>New</th>
<th>Source Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990 Before</td>
<td>1,080</td>
<td>403</td>
<td>680</td>
<td></td>
</tr>
<tr>
<td>1990 After</td>
<td>2,315</td>
<td>403</td>
<td>680</td>
<td>1,232*</td>
</tr>
<tr>
<td>2000 Before</td>
<td>1,389</td>
<td>438</td>
<td>851</td>
<td></td>
</tr>
<tr>
<td>2000 After</td>
<td>2,930</td>
<td>438</td>
<td>851</td>
<td>1,383**</td>
</tr>
</tbody>
</table>

* China, 687; India, 332; Ex-Soviet, 213
** China, 764; India, 405; Ex-Soviet, 214

Source: tabulated from Penn World Tables, using data on GDP per capita, GDP per employee and population. Ex-Soviet data are sparse; most 1990 based on population extrapolations.
Rough Estimates of Effect of Doubling of Labor Force on Global K/L Ratio*

<table>
<thead>
<tr>
<th>Year</th>
<th>Rate</th>
<th>Before (1996 US$, PPP basis)</th>
<th>After</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>5% rate</td>
<td>$53,500</td>
<td>$29,800</td>
<td>0.56</td>
</tr>
<tr>
<td>1990</td>
<td>10% rate</td>
<td>$36,200</td>
<td>$20,300</td>
<td>0.56</td>
</tr>
<tr>
<td>2000</td>
<td>5% rate</td>
<td>$61,300</td>
<td>$37,600</td>
<td>0.61</td>
</tr>
<tr>
<td>2000</td>
<td>10% rate</td>
<td>$39,400</td>
<td>$25,100</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Source: calculated from Penn World Tables (PWT), with perpetual inventory method based on investment (no distinction among types of investment). China investment rate in current currency, not PPP, and ex-Soviet area based on K/L ratio of 15% US.

* Please note that these estimates are NOT final and are crude orders of magnitude. PWT has not yet produced “official” capital stock figures.
New Low Wage, L, + Fall in K/L Creates Major Adjustment Problem in Global Labor Market

Downward wage pressure/job loss in “old” developing countries: invalidates pre-doubling growth strategy?

Downward job loss/wage pressure on skilled workers in advanced countries; invalidates “upgraded jobs structure” strategy?

Increased demand for labor in new globalizers; low-paid/low-skilled gain; and opportunities for high-skilled because of immigration/offshoring.
Big Winners from Doubling: Workers in New Entrants and Capital

Living standards in China/India rise with growth, reducing world inequality despite rising inequality *within* countries.

World inequality depends on inequality among and within developing countries; among and within advanced countries; and on Advanced/Developing Gap.

Decline in Advanced/Developing gap due to China and India growth dominates calculation.
Ln variance fits with wage regressions, log-normal distribution.

Nice adding up formula. Take rich with mean ln income r and poor with mean ln income p; α share of world in rich; b share of each country in world. Then \(\sigma^2 \) of global:

\[
\sigma^2 = \alpha \sigma_r^2 + (1 - \alpha) \sigma_p^2 + (1 - \alpha) \alpha (r - p)^2 + \sum b_c \sigma_c^2
\]

where \(\sigma^2 = \) variance in ln income,
\(\sigma_r^2(\sigma_p^2) = \) variance in ln income in rich (poor),
\(\sigma_c^2 \) variance in ln income within each country.
<table>
<thead>
<tr>
<th></th>
<th>σ²</th>
<th>Mean</th>
<th></th>
<th></th>
<th>α (Dev share)</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>1.04</td>
<td>1.24</td>
<td>0.92</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Adv</td>
<td>0.16</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Dev</td>
<td>0.32</td>
<td>0.50</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LnGap</td>
<td>2.09</td>
<td>2.33</td>
<td>2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.22</td>
<td>0.18</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1980-2000: DROP in world inequality of 0.32 points because China, India reduce gap between Adv and developing countries (Dev).

But this does not account for inequality WITHIN countries.
What Happened to W/in Country Inequality?

It rose but by < 0.32 drop in σ^2

Using all available Ginis, inequality within developing countries rose substantially from 1980-2000; it did not rise in advanced countries.

Change in Ginis is 0.004 per year over the period. This is .08 for 20 years.

Translates into $\Delta \sigma$ of ~ 0.16 (assuming a log-normal distribution).

If initial σ of 0.30, raise it by 0.16 to 0.46. This increases σ^2 by 0.12 ($= 0.46^2 - 0.30^2$) compared to fall of 0.32.

No conceivable rise in within-country inequality could overcome 0.32 drop.
Now Look at One Transition Problem – the United States

- Huge increase in less-educated work force puts pressure on low-skilled, but … major problem for educated as well.

- Huge increase in educated work force: In 2000, ~100 million enrolled in college globally – 15% in US; 38% in new globalizers and they do science and engineering (SE).

- 2003 China graduated 700,000 BS engineers compared to 60,000 in US !!

- US Share of World PhDs in SE fell from nearly 50% in 1975 to 22% in early 2000s to ~15% 2010.
Ratio of #S&E PhDs from Foreign Universities to # from US Universities

<table>
<thead>
<tr>
<th>Ratio of PhDs in each year</th>
<th>1975</th>
<th>1989</th>
<th>2001</th>
<th>2003<sup>a</sup></th>
<th>2010<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia major nations</td>
<td>0.22</td>
<td>0.48</td>
<td>0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>na</td>
<td>0.05</td>
<td>0.32</td>
<td>0.49</td>
<td>1.26</td>
</tr>
<tr>
<td>Japan</td>
<td>0.11</td>
<td>0.16</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU major (Fr, Germ, UK)</td>
<td>0.64</td>
<td>0.84</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All EU</td>
<td>0.93</td>
<td>1.22</td>
<td>1.54</td>
<td>1.62<sup>c</sup></td>
<td>1.92<sup>c</sup></td>
</tr>
<tr>
<td>Chinese ‘diaspora’ vs. US ‘natives’ (estimate)</td>
<td></td>
<td></td>
<td></td>
<td>0.72<sup>b</sup></td>
<td></td>
</tr>
</tbody>
</table>

^a For 2003 & 2010, ratios calculated using US doctorates at 2001 production level.

^b ‘Diaspora’ includes estimates of Chinese doctoral graduates from UK, Japan, and US (with temporary visas). US ‘natives’ = citizens and permanent residents.

^c EU data extrapolated from earlier years.

Sources: Science & Engineering Indicators – 2004 (NSF), and primary sources referenced therein; Weigo & Zhaohui National Research Center for S&T Development (China) – private communication.
Trade Models to Analyze Doubling

New trade/Ricardian model: countries can lose if new entrants take key industries. Gain comparative advantage through education.

Standard N/S model: North has SE workers who produce technological change. North exports new goods; South gets low-wage sectors that produce old goods.

Scale N/S model: Large numbers educated in South + digitalization of knowledge work → squeeze model? N (US) caught between low-wage and high-tech in S (China).
Four Mechanisms of Globalization

Trade -- Developing countries dominate low-wage, low K/L sectors but could gain in high-tech areas because of numbers of educated.

Immigration – US has bifurcated flows.

Capital – offshoring and FDI shifts demand to large developing countries.

Technology – spread of technology reduces advanced country edge; productivity advance in one country can reduce income in trading partner.
1. Production of High Tech Globally

Figure 6-5
Country share of global high-technology market in selected countries: 1980–2001

Percent

40

United States

30

Japan

20

European Union

10

Germany

China

South Korea

0

Science & Engineering Indicators – 2004
High-tech Trade, US Share of World X Falls, Share of World M Rises

<table>
<thead>
<tr>
<th>Year</th>
<th>US Share of High-tech Exports</th>
<th>US Share of High-tech Imports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>30%</td>
<td>13%</td>
</tr>
<tr>
<td>2001</td>
<td>17%</td>
<td>18%</td>
</tr>
</tbody>
</table>

This is US trade balance problem in sector with comparative advantage.

<table>
<thead>
<tr>
<th>Degree Type</th>
<th>1990</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor’s</td>
<td>11%</td>
<td>17%</td>
</tr>
<tr>
<td>Master’s</td>
<td>19%</td>
<td>29%</td>
</tr>
<tr>
<td>All PhDs</td>
<td>24%</td>
<td>38%</td>
</tr>
<tr>
<td>PhDs< 45</td>
<td>27%</td>
<td>52%</td>
</tr>
<tr>
<td>Post-Doc</td>
<td>51%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Source: All but post-docs from Census of Population; post-docs from NSF. Note: FB % post-doc in 1987 was 45%.
3. Capital Flows: FDI to US dropped to 0.3% in 2003. No good #s on offshoring but …

Why Move Offshore?

Source: WWW.ventoro.com
4. Technology: Share of Scientific Papers Published

[Bar chart showing the share of scientific papers published by regions (US/EU, Asia, Rest, X-Sov) in 1980 and 2001.]

- 73% in 1980
- 65% in 1985
- 63% in 1990
- 52% in 1995
- 43% in 2000
- 40% in 2003
And China Moves up in Georgia Tech Index of Technology Capability
Spread of Technology & Education Can Harm Advanced Country

If it loses “retainable” industries or competitor catches up in productivity in industries with close cost competitiveness (Gomory-Baumol).

Industries with R&D/new products are natural temporary monopolies: “It’s good to be a monopolist.”

Large developing country leapfrogs to tech dominance because of scale effects.

But if spread leads developing country to take over high-tech and produce lots at low price, world output zooms and US benefits from terms of trade (Ruffin-Jones).
What can we learn from history?

Europe after WW2 – Marshall Plan
massive increase in K/L

Japan after WW2 – 30 years to recover

US South after Civil War – 80 years ??
The Importance of Job Structure in Contested Sectors

Situation 1: Contested have many “good jobs” and growth potential, so loss → big drop in wages for workers (eg: high-tech mfg; electrical machinery, motor vehicles, chemicals; information services, education).

Situation 2: Contested have few or “bad” jobs. (eg: astronomy, trip to Mars; apparel, keypunching data)

→ GOVERNMENT, INDUSTRY MUST CHOOSE SECTORS WISELY; GOVT R&D AND EDUCATION MONEY CRITICAL
Paradox of Globalization

Victory of Capitalism and spread of modern technology is epochal achievement for humanity (think of all those former peasants advancing science ... literature ... sports).

But Cold War winners at risk during transition.

Race between improved wages in developing countries and technical change in advanced vs. worsening terms of trade.

Spread of capitalism → need for safety net and controlled distribution in global leaders.
Scenarios for the Era of Great Doubling

BAD TRANSITION

China, India develop enclave economies that use low-paid "surplus labor" from agriculture, wages grow slowly; US continues to import capital.

Global capital stock increases slowly \rightarrow wages in advanced drop/stagnate until parity established.

Transition is long: China – 6% growth of wages \rightarrow 50 yrs to reach US level; at 7% 30 years.

Globalization \rightarrow new protectionism, rules for global economy; huge within-country inequality.
Scenarios for the Era of Great Doubling
GOOD TRANSITION

Technological advance increases because additional SE R&D from developing countries.
TC → reduced cost of goods, which dominates declining terms of trade.
Advanced countries retain some leading sectors.
Social services and infrastructure substitute for stagnant, slow-growing wages.
Large increase in K/L → higher wages in LDCs; fall in world poverty/inequality.
Policies for adjustment and for development

United States
1. Targeted R&D – Nanotech initiative?
2. Specialize in developing innovations
3. Strengthen knowledge networks
4. Partner with large developing countries
5. HIGHER SAVINGS RATE
6. Safety net/social wage

GLOBAL FINANCIAL INSTITUTIONS
1. Take global perspective when providing advice
2. Support local “heresies”/allow policy autonomy
3. Greater regulation of capital flows
5. FOCUS ON TRANSITION FOR LABOR, not on protecting capital